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Multiwavelength Distributed Feed Back Laser Array
Transmitters for Optical Network Technology Consortium
Reconfigurable Optical Network Testbed

Abstract— We discuss the design, fabrication, and perfor-
mance of experimental multiwavelength laser array transmit-
ters that have been used in the reconfigurable optical network
testbed for the Optical Network Technology Consortium (ONTC).
The experimental four-node muitiwaveiength network testbed is
SONET/ATM compatible. It has employed muitiwavelength DFB
laser arrays with 4 nm wavelength spacing for the first time.
The testbed has demonstrated that muitiwavelength DFB laser
arrays are indeed practical and reproducible. For the DFB laser
arrays used in such a network the precise wavelength spacing
in the array and the absolute wavelength control are the most
challenging tasks. We have obtained wavelength accuracy better
than :£0.35 nm for all lasers, with some registered to better than
+0.2 nm. We have also studied the array yield of our devices and
used wavelength redundancy to improve the array yield. Coupling
efficiencies between —2.1 to —4.5 dB for each wavelength channel
have been obtained. It is achieved by using specially designed
lensed fiber arrays placed on a silicon V-grooved substrate to
exactly match the laser spacing. The transmitter consisted of a
multichip module containing a DFB laser array, an eight-channel
driver a2rray based on GaAs IC’s, and associated RF circuitry.

1. INTRODUCTION

RADITIONALLY, increasing the transmission band-

width in telecommunications has been accomplished by
time-division-multiplexing (TDM) through the increase in the
transmission speed. Early commercial systems at rates from
45 Mbiv/s to 1.7 Gb/s have been deployed in the US in the last
decade. More recently, SONET/SDH OC-48 systems at 2.5
Gb/s have been installed and used worldwide, while OC-192
systems at 10 Gb/s are being tested in several laboratories.
Beyond 10 Gbfs, it is believed that wavelength division
multiplexing (WDM) is a viable technclogy to exploit the
extremely broad optical bandwidth (30 THz) in the low loss
transmission window of the optical fiber. As shown in Fig. 1,
for example, early WDM transmission experiments with 10,
16, and 100 waveiength channels with the aggregated capacity
of 20, 32, and 62 Gb/s were reported in 1985, 1988, and 1990,
respectively [1]-{4]. An eight-channel WDM system with 20
Gb/s per channel was reported in a recent experiment [5]. It
is clearly seen that the aggregated transmission capacity using
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Fig. 1. The trend of transmission capacity of optical fiber communication

systems.

WDM has surpassed that of the traditional TDM systems.
By using erbium-doped fiber amplifiers WDM systems can
be made cost-effective for certain applications relative to
traditional TDM systems with electronic regenerators. For
instance, a four-channel WDM system with 10 Gb/s per
channel would be cost effective at the present time compared
with a 40 Gb/s TDM system. Moreover, the wavelengths
add a new functionality that can be used for routing signals
and for providing services that are independent of the signal
format. These capabilities are specially atractive for optical
networking. Recently, several research groups have proposed
all optical networks based on WDM technologies [6]~[8].
Fig. 2 shows the concept of a scaleable, modular muitiwave-
length network with rearrangeable wavelength routing and
switchable wavelength conversion {6]. The number of nodes
in a scaleable network is weakly dependent on the number
of wavelengths used. Scaleability is achieved by wavelength
conversion and reuse.
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Fig. 2. A scaleable, modular multiwavelength multihop optical network with
rearrangeable wavelength routing and switchable wavelength conversion [6].

Recently, a four-node testbed in a double ring configuration
as shown in Fig. 3 has been constructed and demonstrated
by the Optical Network Technology Consortium (ONTC) [9].
The key enabling technologies are InP-based DFB laser arrays
and multichannel OEIC receiver arrays at each network access
node, and multiwavelength cross-connect switches intercon-
necting all access nodes in the core of the network. Wavelength
conversion on a packet-to-packet basis is accomplished at
the access nodes by the ATM switches. Both acousto-optic
tunable filters and optical interference filters have been used
successfully for wavelength routing.

This paper presents the design, fabrication, and performance
of the experimental laser array transmitters used in the ONTC
testbed. Special attention is paid to the control of the wave-
length accuracy and wavelength channel spacing in the design
of the experimental DFB laser array. Improvement of the
laser array yield has been obtained by the use of wavelength
redundancy. Fiber array coupling employing silicon V-grooves
as well as thermal management of the transmitter module
further assure adequate power output into the fibers and long
term stability of the operating wavelengths.

II. MULTTWAVELENGTH DFB/DBR LASER ARRAYS

A. Laser Array Overview

Multiwavelength DFB/DBR laser arrays have been demon-
strated in the 1.3 um wavelength region [10] and in the
1.55-um wavelength region [11]-[20]. A DFB laser array, with
up to 21 wavelengths, integrated with a star coupler and optical
amplifiers [16] has been achieved in the 1.55 um region.
A similar DBR laser array integrated with electroabsorption
modulators has also been reported [19]. Table I summarizes
the recent progress of multiwavelength laser arrays. In general,
the lasing wavelength of each laser in an array coincides with
the Bragg wavelength ), of the grating given by [21]

Ao = 2negA ¢y}

User User
Group C Group B
Access Node C Access Node B
WDM Optical Optical Fiber
Crossconnects 3 Amplifiers
Access Node D Access Node A
User Physical User
Group D ) Layer Group A
Network
Control
Fig. 3. The architecture of a four-node rearrangeable optical network testbed.

where n.g is the effective refractive index of the waveguide
and the grating spatial period. To obtain multiple wavelengths
in an array, the grating pitches for individual lasers are varied
on the wafer during the grating fabrication by one of the
following techniques: 1) stepping a window mask during
multiple holographic exposures [10], [19], 2) e-beam direct
writing [14]-[16), 3) exposing an e-beam-generated grating
mask with X-ray [12], and (4) exposing an e-beam-generated
phase grating mask with UV light (near field holographic
printing) [22]. An alternative way is to use a fixed-pitch grating
and to change the effective refractive index of the waveguides
within an array. This is accomplished by producing different
thickness in the waveguide cores using multiple selective
etching [11] or selective area growth [20]. The thickness
is controlled by several thin stop-etch layers during etching
[11] or by the area of the mask during growth. Among the
techniques mentioned above, near-field holographic printing of
gratings onto the wafers seems to be the most attractive way
for potentially low-cost production. It is a batch process and
compatible with the current photolithography process used in
the laser fabrication.

To assure lasing at each Bragg wavelength in a DFB laser
array, \/4-shifted gratings are incorporated and the facet
reflections are eliminated by anti-reflection coatings or slanting
the rear facet [10], [12], [14]-[16]. Wavelength spacings as
small as 0.66 nm [12] and as large as 7 nm [14] have
been reported. The maximum wavelength span is limited by
the optical gain bandwidth of the active layer. The largest
span of 131 nm was obtained by the use of compressive-
strained multiple quantum well active layers [14]. The lasing
wavelengths range from 1459.2 to 1590.6 nm. which is con-
siderably wider than the optical bandwidth of erbium-doped
fiber amplifiers (1535~1565 nm). DBR laser arrays have the
advantage of being tuned to a precise wavelength spacing
or a variable wavelength spacing that is required by the
network [11], [13], [18]-[20]. However, active wavelength
monitoring and feedback control are required since the tuning
characteristics may change with aging [23]. In contrast. the
lasing wavelength of a DFB laser module has been shown to
be very stable (—0.01 nm/yr.) [24]. Therefore. it is desirable



TABLE 1
SUMMARY OF THE RECENT PROGRESS OF MULTTWAVELENGTH LASER ARRAYS

Spacing/Span

Year #of As Structure _Active Layer Grating nm Ref.

Toshiba 1987 S DFB  Bulk (1.3 pm) Holography'’ 5720 10
AT&T 1989 4 DBR MQW Holography™  Tunables10-20 11
NTT 1950 20 DFB Bulk EB/x-ray 066/12.5 12

1719

NEC 1990 4" DBR MQW Holography Tunable/8 13
Bellcore 1992 20 DFB CSMQW EB 31 14
Bellcore 1992 20 DFB TSMQW EB 3/55 15
Bellcore 1992 21" DFB CSMQW EB 3.9/75 16
NTT 1992 10 DFB CSMQW EB Tunzble? 17
AT&ET 1993 8 DBR CSMQW EB/UV 0.8/tunable 18
AT&T 1993 16"  DBR CSMQW  Holography'"'  0.67/umable 19
o 1993 4 DBR MQW  Holography"™ N5 20

{!} Stepping a window mask during repeated exposures.

[z, Different waveguide core thickpess

[3] With integrated wavelength combiners and optical amplifiers.

{4] DFB. distributed-feedback, DBR: distributed Bragg reflector, MQW: muhiple quantum well
s p ‘

strained, TS: tensile-strained, EB: electron beam.

to use fixed multiwavelength DFB laser arrays without active
wavelength control if the required wavelength spacing must
be reproducible within the manufacturing tolerance.

B. Control of Wavelength Spacing [30]

To use the multiwavelength laser array in real systems,
its wavelength spacing has to match the network specifica-
tion within the tolerance given by the optical bandwidth of
wavelength-selective devices such as filters and multiplex-
ers/demultiplexers. With a constant wavelength spacing, the
wavelength comb generated by the laser array can then be
moved as a group by adjusting the heat sink temperature 10
match the wavelength comb used in the system. The lasing
wavelength of a DFB laser red-shifts at a rate of ~1 AJeC
(12.5 GHz/°C at 1.55 pum wavelength region) resulting from
the temperature dependence of the waveguide effective refrac-
tive index. Therefore, the practicality of the multiwavelength
laser arrays depends on how well the wavelength spacing can be
controlled during fabrication.

The Bragg wavelength spacing A\ between the neighboring
wavelengths within a DFB/DBR laser array is mainly deter-
mined by the effective refractive index neg and the increment
A in the grating \periods:

2neg AA
A= ———— 2
T+p @
_ A Oneg
b= Neg OA ' 3

where the parameter D is used to take into account the
wavelength dispersion of the material and waveguide, and 6

is the error in wavelength spacing given by

InegbA + S ageﬁ 5z
br= o @

where §A is the fabrication error in grating pitch (digitizing
error ~0.04 A in our e-beam writer), and 6z represents the
relative random fluctuations that cause the effective refractive
index to vary among different lasers within an array. To
obtain a uniform wavelength spacing, we have to minimize
SA and éx. We have estimated the wavelength variation due
to imperfections in grating and waveguide fabrication using
the layer structure shown in Fig. 4. The lateral confinement is
assumed to be buried heterostructure. An InP buffer layer is
inserted between the grating layer and the multiple quantum
well active layer such that the -grating depth is accurately
controlled by the growth instead of by chemical etching [25].
The Bragg wavelength is assumed to be 1552 nm. The effec-
tive refractive index is determined from the eigenfunction of
the multilayer waveguide constructed using the matrix method
[26] and solved by Muller’s method {271 using the material
refractive index published in [28]. The first two rows of Table
II list the derivatives of the effective refractive index (or the
Bragg wavelength) with respect to the possible fluctuations.
6z includes the grating parameter {mark to period ratio m/A
shown in Fig. 4(b)] and the waveguide parameters (width
W, bandgap wavelength Ag and normalized thickness t/to)-
The last three Tows show the allowed relative fluctuations
on grating and waveguide parameters 10 achieve wavelength
spacing variations less than 0.2 nm or 0.5 nm. There are other
factors affecting the Bragg wavelength through carrier density
fluctuation such as laser threshold current and longitudinal
spatial hole burning. In general, they are not as critical as
imperfections in fabrication especially if quantum well active
layers are used [29].

We have characterized eight 21 wavelength laser array
chips (129 DFB lasers) from one MOCVD grown wafer
previously made in our laboratory. A few lasers on the chip
are not included because of high threshold current or lasing
in dual modes due to the imperfection in fabrication. For
each array chip, the wavelength spacing AM is determined
by a least-mean-square fit to the wavelengths measured at 20
mA above threshold, and then the wavelength deviation §A
from the line of constant wavelength spacing is estimated
for each channel. As shown in Table III, the wavelength
spacing of each chip is measured to be within 3.71 £ 0.05
nm. The absolute wavelength is about 2 nm away from the
calculated value due to uncertainties in the exact parameters
of growth and fabrication in spite of locally good uniformity.
Our experimental data also indicate that any one of the DFB
Jasers in an array has about a 35% probability to lase within 02
nm of the wavelength demanded by the constant wavelength
spacing. The probability increases to 74% if the wavelength
tolerance is relaxed to 0.5 nm. The above yield does not take
into account other specifications such as threshold current
and power. However, the yield could be improved in a
production environment because of tighter control in the
material properties and the fabrication process.
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Fig. 4. DFB laser layer stucture used to calculate the Bragg wavelength
variations induced by the fabrication imperfections in gratings and waveg-
vides, (a) longitudinal cross section and (b) schematic drawing. 1.25Q:
GalnAsP quaternary with a bandgap wavelength of 1.25 mW: waveguide
width, ¢: waveguide thickness. A: grating period and m: mark portion of the

TABLE III
MEASURED WAVELENGTH VARIATION OF DFB LASER ARRAYS
Dev.# #ofks Ac Shz" AR G A '<0.2nm 5A<0.5am  5A<lam
am am om nm # (%) # (%) # (%)
Cal 1544.99 363
11 14 1544 -0.99 3.76 031 5(36) 13 (93) 14 (100)
i5 10 15416 -3.39 3.72 042 2 (20) 5(59) 8 (80)
24 18 15431 -1.8% 372 038 8 (44) 13(72) 17 (99)
26 13 15457 0.69 3.66 049 3(23) 8 (62) 12(92)
51 17 15428 =219 3.68 0.3 6(35) 14(32) 16 (54)
56 19 15427 229 i 0.53 7(37) 13(74) 17(89)
s7 17 15428 -2.19 374 0.23 7¢41) 14 (82) 15 (88)
58 21 15426 -2.39 372 . 035 7(33) 15(71) 18 (86)
Average 16 15428 .29 37205 033
Total 129 45 (35) 94 (74) 117 (91)

{1} A measured wavelength for DFB laser 12in 2 21-wavelength DFB laser array.

(2] 5hia = Auz - calculated wavelength (1544 99 am)

[3] Ak average wavelength spacing withia 2 21-wavelength DFB laser aray

[4] 6% measured wavelength deviation away from the average constant wavelength spacing

{5} oz standard deviabon of 54 within an array

TABLE IV
FIXED WAVELENGTH DFB LASER ARRAY YIELD ESTIMATED FROM THE YIELD
OF A SINGLE DFB LaSER OBTAINED FROM OUR INTEGRATED CHIPS

A < 10.2 om 8A < £0.5 nm
LLD/A 2 LD/A 1LDA 2 LD/
1A 5% 58 % 74% 93 %
42xs 1.5% 11% 30% 76 %
8is 0.02% 1.2% 9% 57%
16 As 08% 33 %

grating.
TABLE 1
WAVELENGTH VARIATION OF DFB LASERS
DUE TO IMPERFECTIONS IN FABRICATION
dx
o ] 2)
SA.A A% sW'hum Whum  Sigam L%
2% - 9.05x10-5  134x102  791x103  176x10%  6.16x1074
% 0.585 0.04 5.93 3.49 0.0776 0.272
5A<0.2 om <0.34 <5 <0.034 <0.057 <2.58 <0.74
sA<05mm  <0.885 <125 <0.085 <0.144 <6.45 <184
5A<1 pm <17 <25 <0.169 <0.287 <129 <3.68

[1) 1.5 pm wide waveguide
[2} 2 pm wide waveguide

{3) 23 =1.99x10~%/nm and D=0.0962

{4] Ao = 1552 am

C. DFB Laser Array Yield [30]

Since all the wavelengths in an array have to fall within
the range allowed by the optical bandwidth of the wavelength
selective devices in the networks, the array yield may drop
significantly when the number of wavelengths increases. The

array yield could be improved by assigning more than one
laser per wavelength. Tabie IV shows the fixed wavelength
DFB laser array yield estimated from the measured yield of a
single DFB laser discussed in the previous section. The array
yield y, is calculated as follows:

Yo=1—-(1-91)" )

where y1is the yield of a laser with its lasing wavelength within
the allowed wavelength tolerance, r is the number of lasers per
wavelength (wavelength redundancy), and n is the number
of wavelengths in an armray. One can see that wavelength
redundancy significantly increases the array yield. With two
DFB lasers per wavelength, we can expect a reasonable array
yield (>50%) up to 8 wavelengths if the allowable wavelength
tolerance is greater than £0.5 nm. It seems that it is difficult to
obtain a good array yield with the fixed wavelength approach
if the tolerance is reduced to less than £0.2 nm without
improving the uniformity in growth and fabrication. Therefore,
the networks which require very tight wavelength tolerance
(<0.2 nm) probably have to rely on tunable laser arrays
together with an active feedback wavelength control.

D. Laser Array Fabrication

The linear laser array contains 20 DFB lasers with two lasers
operating at the same wavelength to produce ten wavelength
channels from 1542 to 1560 nm with 2 nm spacing. Each laser
has a modulation bandwidth greater than 3 GHz. However,
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Fig. 5. Lasing wavelengths and threshold currents of a mutiwavelength DFB
laser array as a function of grating period under CW operation.

in the testbed implementation, only four wavelength channels
spaced 4 nm apart are used, with each wavelength channel
operated at 155 Mb/s, dictated by the speed of the commercial
ATM switches. The built-in wavelength redundancy on the
chip helps to improve the array yield as well as its reliability.

The wafer is grown by low pressure metal organic chemical
vapor deposition (LP-MOCVD) at 625 °C and 76 torr.
The active layer consists of six compressively strained
Gag 17Ing g3As073Pp27 quantum wells. The well thickness is
8 nm. The barrier layers are Gag37sInge2sAso73Po27 that is
tensile strained to compensate the compressively strained
active layers.

On each wafer, ten A/4-shifted first-order gratings with
different periods are generated by fast e-beam lithography. The
gratings are etched into the upper part of the waveguide region
by reactive ion etching using a noncorrosive gas mixture of
CH./H;. The ridge-waveguide lasers are formed by a self-
aligned process. Each chip contains 20 lasers divided into two
groups of ten. The first group produces 10 wavelengths with
2 nm spacing between adjacent lasers of 250 um physical
separation. Identical wavelengths are reproduced in the second
group for wavelength redundancy. The lasers are cleaved into
500 um long cavities, and antireflection coatings are applied
to both facets to assure single-longitudinal-mode operation.

The built-in wavelength redundancy in the array design,
the uniform growth by MOCVD, and the precision of e-
beam gratings have all contributed to the achievement of the
wavelength accuracy required for the multiwavelength laser
array.

E. Laser Array Performance

The lasing wavelengths and threshold currents of a typical
laser array are shown in Fig. 5. The array shows a 10 wave-
length comb of 2 nm spacing as designed. The light horizontal
lines indicate the four designated wavelengths (1546, 1550,
1554, and 1558 nm) for the ONTC testbed. The wavelength
deviations from the designated channel wavelengths are less
than 0.35 nm for all wavelength channels. The side-mode
suppression ratio is 35 dB or better for all wavelengths. Each
laser delivers a minimum of 2 mW facet power at a drive
current of 60 mA.

W

Housing Driver array , Laseramay

Ceramic fanout Fiber array

«—Fibers

ThermaVl/electrical
isolators

TEC

Driver mount

Laser mount

Fig. 6. Schematc representation of laser array transmitter module.

III. ARRAY TRANSMITTER MODULE

A. Module Design

The physical design features of the module are schemati-
cally represented in a cross-sectional view as shown in Fig. 6.
The package contains a die-attached laser array and a fiber ar-
ray, which has been actively aligned (lasers active) to the laser
array. Fig. 7 shows a micrograph of the fiber array aligned
with the laser array by using a silicon V-grooved substrate
that is precisely matched to the laser spacing. The fiber array
consists of low reflectance conical microlenses {31] that we
have designed and fabricated. The conical microlenses were
fabricated on geometrically concentric fibers with essentially
identical outside diameters. This step was essential in using
preferentially etched silicon V-grooved substrates to fabricate
dimensionally precise fiber arrays.

In assembling the module, the laser array is mounted
(soldered) onto a gold-plated copper submount. The laser sub-
mount is thermally and electrically isolated from the metallic
submount on which the driver chip is mounted. A custom
chip carrier (electrical fanout) is also mounted on the same
submount as the driver. Fig. 8 is a photograph that shows
the relationship between the fiber array, laser array, driver
IC, and the ceramic chip carrier. The temperature of the laser
array is controlled via the copper submount by a Thermal
Electric Cooler (TEC) and a heat sink. A controller circuit
(daughter board) was designed and fabricated and is mounted
on the transmitter mother board (Fig. 9). Unlike the laser array
that requires a precise user-adjustable temperature to control
wavelength, the driver array does not require a user-adjustable
temperature. Consequently, there is no thermoelectric cooler
within the heat dissipation path of the driver IC. In fact, it is
noted that the GaAs driver chip is thermally managed entirely
by only the side-mounted heat sink.

B. Ceramic Chip Carrier

The chip carrier can be seen in Fig. 8. The carrier provides
fanout circuits between the laser driver array and the external
solder tabs that are arranged in a butterfly configuration. Some
of the pertinent characteristics of the ceramic carrier are a)
the package dimensions are 2.1” x 1.0” x 0.035", b) the
substrate material is 95% aluminum oxide (Alumina), c) the
metallization for the conductors is W/NI/Au, d) the /O pads
are on a 25 mil pitch, e) a ribbon lead-frame is brazed to the /O
pads, and f) a two-tier wirebond pad topology (featuring 6 mil



Fig. 8. Photograph of the relationship between the ceramic chip carrier.
driver IC, laser array. and the fiber array.

pitch, 3 mil-wide bond pads) is utilized. In addition. the carrier
features seven metallization layers. six ceramic layers, 50
conductors for the high-speed differential signals, and a layer
#1 metallization that facilitates the mounting of decoupling
capacitors.

The seven metal layers include the aforementioned pad
layer for decoupling capacitor attachment. two layers used
to route ideally dc levels such as bias voltages and other
static levels, a composite dc power plane that is shared by
Vi+ (terminating resistor level) and V.. (the most negative

Fig. 9. Photograph of transmitter mother board showing laser module in top
rear section of board and temperature controller daughter board in bottom
rear section.

power supply voltage), the high-speed signal layer, and finally
two ground planes. It is noted that the 50 Q conductors are
actually microstriplines that are generated by sandwiching
the appropriate conductors between power planes, which are
essentially ac grounds.

C. Thermal Management

A prudent combination of analytical techniques and finite
element modeling were utilized for the thermal analysis of
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TABLE V
OpTicAL CHARACTERISTICS OF TRANSMITTER MODULES.
AL LASERS WERE DRIVEN AT 60 mA AND ALL ARRAY
WERE TEMPERATURE TUNED TO DESIGNED WAVELENGTHS

Nominal Laser Power 1o Coupling Operaung
wavelength | wavelength | fiber (dBm) | efficiency | temperature
(nm} offset (nm) (dB) (°C)
1546 =03 ~0.2 4.5 20.7
Module 1550 -02 +1.1 -2.7 20.7
=1 1554 +0.4 -0.3 3.7 20.7
1558 -0.2 ~07 -4 | 207
N 1546 -01 +2.2 =21 169
Module | 1550 +0.1 +1.3 1 -2.1 16.9
#2 : 1554 -0.1 +4.6 i =23 16.9
[ 1358 +0.2 +2.0 3.6 169
! 1546 | +0.2 +0.8 37 15.4
Moduie | 1550 { +0.1 +04 -3.5 . 154
3 1554 +01 2.1 4.5 15.4
: 1558 -0.1 +2.9 -28 154
H 1546 -0 1 -1.9 48 209
Moduie ! 1550 +0.2 0.1 44 209
4 . 1554 +0.1 -0.8 -3.0 209
| 1558 +0.1 -0.3 -1.8 209

the module design. In this work. we considered numerous
parameters including IC power dissipation levels. the effect
of the TEC cold side temperature. the ambient temperature
effects. and also the effect of insulation. i.e., varying film
coefficients. The following results pertain to a local ambient
temperature of 25 °C.

The analysis predicted that the temperature field of the laser
array is independent of the local ambient temperature. The
laser temperatures are dictated by the temperature boundary
condition imposed by the TE cooler. This was seen by ob-
serving that the maximum laser temperature is consistently
around 6.7 °C above the TE cooler’s cold-side temperature.
However. the situation for the driver chip is very different.
It was determined that the temperature of the driver (which
ranges from about 43.2 °C to 57.1 °C is a strong function of
the local ambient temperature, but is essentially independent
of the TE cooler’s temperature. The maximum temperature of
the GaAs chip was consistently shown to be about 17 to 18
°C above the local ambient temperature.

Thus. we have determined that, under the conditions antici-
pated. the temperatures of the lasers are both tunable and stable
as required. This result has been corroborated by laboratory
experiments using prototype laser arrays.

D. Module Performance

We have completed and delivered four transmitter modules
required by the Phase 1 ONTC program. Table V sum-
marizes the optical characteristics of four modules used in the
testbed. Fig. 10 shows the transmitter output spectrum of the
four-wavelength channels superimposed on the transmission
specttum of the filter characteristics of the cross-connect
switch. Adjustment of the laser temperature to match the center
wavelength of the WDM cross-connect filters has resulted in
better than +0.35 nm variation from the target wavelengths,
with three modules less than £0.2 nm. Small-signal modula-
tion tests of the modules have shown transmission bandwidths
of approximately 3 GHz at typical bias conditions. Fig. 11
displays the measured BER at 155 Mb/s for a typical module.
The channel crosstalk penalty is negligible as can be seen in
Fig. 11.
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Fig. 10. The optical spectrum of the laser array transmitter superimposed on
the transmission characteristics of the cross-connect switch.
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Fig. 11. Measured bit-error-rate at 155 Mbit/s of a typical multiwavelength
transmitter module.

V. CONCLUSION

Significant progress has been made recently in the de-
sien and fabrication of multiwavelength DFB laser arrays.
Several DFB laser array transmitter experimental research
prototypes have been successfully employed in a rearrangeable
optical network testbed for the first time. Precise wave-
length spacing and wavelength control have been achieved
with reasonable yield for a four-wavelength array by the
use of wavelength redundancy. The multiwavelength laser
array has been demonstrated to be a viable light source
for multiwavelength lightwave systems. It is expected that
multiwavelength laser arrays can be cost competitive to that
of single wavelength lasers when the yield of the array chip
improves as required for large volume production.
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